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Abstract 

We explore the development of a probabilistic model of segmented markets, and go on 
to show how such a model adds value in various common e-banking and e-commerce 
scenarios. We compare this modern treatment with classical approaches, and 
demonstrate how such a probabilistic model reduces the cost of acquiring new 
customers, improves ROI on marketing campaigns, and helps identify the correct point 
to intervene in the customer lifecycle to retain previously loyal customers. 
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A NOTE ABOUT TERMINOLOGY 

 
Data mining professionals come from a wide variety of backgrounds, including computer 
science, IT, statistics, pure mathematics, machine learning and engineering. As a result, 
there are often a plethora of terms in use to describe the same concept. Most often, we 
see data in spreadsheet format, with columns representing variables in the data (that is, 
a value for an observable quantity), and rows representing an instance of several 
variables (Figure 1). 
 
 

 
 
Figure 1; A simple dataset containing some retail demographics and purchasing 
information. See Table 1 for an explanation of the abbreviations. 
 
 
We will use the term “variable” to mean “column” and “data point” to mean “row”. More 
often than not, a row holds observable data representing a customer’s details; where this 
is not the case we will make it clear. Further, we will use the term “segmentation” where 
others may write “cluster analysis”. 
 
 

INTRODUCTION 

To the professional data analyst, segmentation is a hard problem, which is considered 
unsolved according to the state of the art. Gian-Carlo Rota wrote in 1997 [1]: 
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 “... Or the subject is important, but nobody understands what is going on; such is 
the case with quantum field theory, the distribution of primes, pattern recognition, 
and cluster analysis.” 

 
It seems not much has changed. We will go on to show how a minimal set of 
assumptions leads to a probabilistic segmentation model, which is invaluable for solving 
real-world e-banking and e-commerce problems. 
 

DATA ANALYSIS AND SEGMENTATION 

What do we mean by “segmentation”? In a marketing sense, we may have a good 
intuitive feel that customers are separated according to market demographics, with 
customers within each segment lying in some sense close together, and customers in 
different segments far apart (see Figure 2). 
 
Unfortunately, this notion proves slippery for data analysis. If all the data were numerical 
variables (age, income, years at present address, etc.), then it would indeed be possible 
to define some notion of distance between any two points in the dataset, or more 
usefully, between any data point and the centre of each cluster. 
 
There are classical analysis algorithms that perform adequately in this case. Such an 
algorithm partitions the datasets into, in this case, two subsets, one for each segment. 
The aim is to minimize the total distance between each point in both segments and the 
centre of the appropriate segment, the partitioning is considered optimal when this 
condition has been met. 
 

 
Figure 2; Two hundred observations of Age and Income sampled from a dataset in two 
segments. 
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Far more typically however, data contains a mixture of numerical and categorical 
variables, where a categorical variable takes on one of a discrete set of values (gender, 
sales channel, retail outlet, etc.) It is impossible to define distance without at least some 
concept of order amongst the categories. Sales channel is a good example. A sales lead 
may have been referred from any of 10 or 20 websites or campaigns, but what is the 
“distance” between Google and the New York Times? 
 
Consider the following example, a dataset representing observations of Sales Channel 
against Promotion in a retail context (see Figure 3). Sales Channel has categories 
indicating from where each lead was referred, Promotion has categories that specify 
which of a number of special promotions was on offer. Again, there are two segments 
here and again colored red and blue. The brighter each cell, the more customers came 
via the corresponding sales channel and promotion. A cell that is more red in color 
represents more customers from the red segment than the blue, and vice-versa. 
 
We may think we see some structure in this data, but it is illusory. Remember, there is 
no order among the categories - Google is neither “greater than” nor “less than” the New 
York Times.  Hence the order of the cells arranged along the axes is completely 
arbitrary, and we can legitimately change the apparent shape of the dataset by 
permuting the categories. 

 
 
Figure 3; A dataset sampled in two categorical variables, Sales Channel and Promotion, 
again containing two segments. 
 
 
Given that the shape of the data is mutable, it is meaningless to talk about cluster 
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“centers”, or “distance to center”. Hence admitting even a single categorical variable to 
the data spells disaster for any segmentation method that relies on a distance metrics. 
 
There have been many approaches to building segmentation models that work round 
this problem. Some require that the number of segments be known in advance 
(impossible in practice); others that every variable in the dataset be categorical or 
continuous (unlikely in practice), or make unwarranted assumptions (such that all 
variables be mutually independent). The last of these assumptions is particularly 
insidious, as mutual independence effectively precludes modeling segmentation. 
Further, it is usually the case that more than one of these assumptions is required to 
build a model that captures something of the shape of the data in a simple form.  It is 
interesting to note, however, that some useful results have been produced despite these 
limitations [2, 3]. 
 
If we are to build a model that accurately captures the shape of a segmented dataset 
whilst making minimal assumptions, we must think about how little we can assume about 
the properties of an arbitrary variable, irrespective of its shape. Any variable has a 
probability distribution; and the probability calculus, built on well-founded axioms, gives 
us a way to manipulate and combine these distributions. A segmented joint distribution 
that represents the shape of the whole dataset is indeed possible to compute from just 
the fundamentals of probability theory, with much weaker assumptions than 
independence over all variables. 
 
In the past, such a probabilistic model would have been hard to compute in practice, 
owing to the somewhat large number of parameters involved in the model. A continuous 
distribution has 2 parameters, mean and width, which is quite manageable, but a 
categorical distribution has a total of 1 parameter (probability) for each category, less 1. 
Because the total of a properly-formed probability distribution is constrained to 1, so 
knowing n-1 of the n parameters gives us the nth. Additionally, each segment has a 
relative importance; it is clear from the data in Figure 1 that there are about twice as 
many blue data points as red. This adds another k-1 parameters for k segments, again 
because the total is constrained to 1. 
 
Looking again at the data in Figure 1, we can compute the number of parameters 
needed for the distribution of each variable from Table 1: 
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Table 1 
Variable types used in data shown in Figure 1 

 
Column Name Meaning Variable 

Type 
Possible Values Number of 

Parameters 
GENDER Customer’s gender Categorical M, F 1 

AGE Customer’s age Continuous 18-95 2 

HOMEOWNER Does the customer 
own their own 
home ? 

Categorical HO (homeowner), 
TE (tenant) 

1 

BEDS Number of 
bedrooms in 
customer’s home 

Discrete 1-7 1 

CHANNEL Sales Channel Categorical ON (online), 
PR (print), 
TV (television), 
DI (direct) 

3 

PRODUCT Product Code Categorical A, B, C, D 3 

 
 
You may notice that we have introduced a new variable type, “Discrete”, for the BEDS 
variable. Although it takes numerical values, this variable follows a “counting 
distribution”, which means that it only has one parameter, mean. 
 
So adding up the number of parameters in the final column, we get a total of 11, plus 
one for the segment relative importance, thus 12 per segment. For 4 segments, this 
would be a total of 4 x 12 – 1 = 47. The total is reduced by 1 because of the overall 
constraint that the relative importance must sum to 1. 
 
In this simple example, considering any reasonable number of segments leads to a fairly 
modest number of parameters, definitely within the grasp of classical optimization 
techniques. However, real-world applications often contain several categorical variables 
with 20 or 30 possible values, leading to a couple of hundred parameters per segment, 
and up to thousand parameters for a multi-segmented model. 
 
Fortunately, however, recent advances in algorithm technology [4, 5] allow computation 
of any model in a number of steps proportional to the square of the number of 
parameters, and at this point, these techniques become feasible in practice. Of course, 
the ever-increasing power of computer hardware helps as well. 
 
Such a model is not just possible, but desirable, for the following three reasons. Firstly, 
models constructed using these techniques are very robust. Missing data values, that is, 
where the value of one or more variables is undefined, are easily and correctly dealt with 
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by the modeling algorithm, and so are the outlier points that indicate faulty data, 
erroneous procedures, or areas where our assumptions might be invalid. Secondly, very 
efficient use is made of the data – taking a random sample of a few tens of thousands of 
data points is enough to well-define the shape of the dataset, which helps in reducing 
the computation time. Thirdly, the form of the resultant model is very quick to compute 
on new data after the model has been defined, which means that the model can be 
easily applied to huge new datasets cheaply and quickly. 
 
The power of the probabilistic model comes from estimating parameters “forwards”; that 
is, exploring possible values for all the parameters to evaluate the fit to the data. 
Classical techniques essentially work “backwards”; that is, trying to evaluate a single 
“best” set of parameters directly from the data. Much can go wrong with the classical 
approach, and these techniques are inherently less robust and stable. 
 
The probabilistic model would be especially useful for improving ROI on advertising 
campaigns. It’s essential that the number of market segments be well-defined, or the 
data will be “blurred” over some incorrect shape, and it will be impossible to accurately 
determine either the value of each segment, or the demographics that represent it. For 
example, a full analysis using a probabilistic algorithm of the data from which Figure 1 is 
drawn reveals three distinct market segments. The age demographic for each segment 
is shown in Figure 4. 
 
 

 
 
Figure 4; Age demographic of the data in Figure 1, revealing 3 segments 
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These segments, although quite distinct when plotted in this fashion, are not well-
separated. The damage done by starting with the data and working “backwards” would 
almost certainly be enough to obscure this result. 
 

SEGMENTATION MODELS IN E-BANKING AND E-COMMERCE 

Market segmentation is essentially the process of partitioning the customer base into 
demographic groups, and then deciding which demographic group best represents each 
individual customer. Precisely what has been recorded in the data might determine the 
uses that this information can be put to. 
 
Modern banks provide a wide range of financial products, designed to service a variety 
of market demographics. For the purpose of applying segmentation models such range 
of financial products can be considered in the context of a bank as a retailer.  
 
Segments have a value, which ultimately can be measured financially. Some segments 
will be more valuable than others; this may be due to the fact that they represent 
customers who have been loyal for many years, or they may represent customers who 
have opted for more profitable products. In an e-banking context, a segment may be 
considered high value simply because it represents customer accounts with a high 
savings balance (or conversely, a high loan balance). 
 
 

 
 
 
Figure 5; An example spreadsheet containing loan quotations, and showing segment 
assignments (three segments in total). 
 
 
The observed variables in the data determine how the segments are defined, and which 
questions we can sensibly hope to answer. The data in figure 5 contain a variable 
indicating whether a sale was made from each quotation (“SOLD”). Hence a conversion 
ratio can be calculated for each segment (see Table 2). It is clear that segment 3 is the 
most valuable, with a conversion ratio approximately double either of the other 2 
segments, so marketing activity should be directed towards the corresponding 
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demographic to maximize ROI. 
 

Table 2 
Conversion ratios and demographics for the data shown in Figure 5 

 
Conversion 
Ratio 

Segment 
Number 

Age (mean) Gender Income (mean) 

11.7% 3 64 M 38.8%
F 61.2%

 

$38,900 

6.3% 2 40 M 64.1%
F 35.9%

 

$21,900 

6.2% 1 44 M 81.3%
F 18.7%

 

$25,000 

 
 
It costs advertising dollars to acquire new customers; therefore each customer initially 
has a negative value. We hope the customers’ value to us will rise over time, and ideally 
reach a peak and stay there (see Figure 6). 
 

 
Figure 6; Typical customer lifecycle (blue), and optimized (purple) 
 
 
As figure 6 shows, customer value is initially negative (labeled point 1), but cost can be 
reduced by optimizing the marketing campaign to target more valuable segments. 
Cross-selling opportunities can increase peak customer value (labeled point 2), and 
intervening with a promotion at the correct point in the customer lifecycle can maintain 
value over time (labeled point 3). These concepts are now discussed in more detail. 
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Looking first at how to minimize the cost of acquisition, we would need data from a 
marketing campaign, one data point per sales lead, that contains a variable indicating 
whether a sale was made. A segmentation model would then reveal customer 
demographics, in whatever other variables were collected as part of the campaign, and 
also yield conversion ratios for each segment. Subsequent campaigns could then be 
targeted to the more profitable segments. The data in Figure 5, and the results collated 
in Table 2 illustrate this. 
 
Improving customer value over time can be as simple as identifying cross-selling 
opportunities. This could be achieved by using a dataset that represents sales of several 
products, one data point per customer per sale, and a variable indicating the type of 
product. A segmentation model would yield the associations between each type of 
product in each segment, that is, for a given demographic, the probability that each 
customer would be interested in car insurance given that they have already taken out 
home contents cover. The data in Figure 1 contain the necessary information; each 
customer record specifies which of four possible products was purchased (labeled A, B, 
C or D). These data represent actual sales, so the simplest possible metric for segment 
value is just the relative customer volume represented by each segment.  
 

Table 3 
Relative volumes from an analysis of the data in Figure 1 

 
Relative Volume Segment Number 
42.8% 3 
31.3% 2 
25.9% 1 
 
 
Looking at the distribution of product sales across the segments allows us to identify 
cross-selling opportunities (see Figure 7). 
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Figure 7; Distribution of product purchases for the data in Figure 1 
 
 
It is apparent from Figure 7 that there are good opportunities in segment 1 to cross-sell 
products A and C, and in segment 2 to cross-sell products B and D. In segment 3, there 
is less clear opportunity, because the distribution of product is more even. 
 
A final example of a pure segmentation technique is focused on optimizing marketing 
ROI. If marketing data were collected containing a variable indicating sales channel (in a 
simple example such as the one that follows, this could be “print”, “online”, “tv” or “direct 
sale”, or more likely in a real-world application, something like referring website), by 
examining the high-value segments of a segmentation model, the optimal distribution 
across sales channels for future campaigns would be immediately apparent. 
 
Referring again to the data in Figure 1 and summarized in Table 3, it would be wise to 
focus our efforts on segment 3 as representing the largest slice of the market. The 
distribution of sales channel across the segments is shown in Figure 8. 
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Figure 8; Distribution of sales channel across segments for the data in Figure 1 
 
 
If we were to focus on segment 3, we would spend approximately almost half (actually 
more like two-fifths) the marketing budget on a direct marketing campaign, and spread 
the remainder about evenly across the remaining three channels. 
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PREDICTIVE MODELS – THE CUSTOMER LIFECYCLE 

Predictive models require data that contains a transaction history for each customer – 
that is, multiple data points, one per transaction, for each customer (see Figure 9). 
 
 

 
 
Figure 9; Sample transactions, one row per transaction, with customer reference and 
dollar values. 
 
Classically, customer loyalty has been computed according to a Recency-Frequency-
Monetary (RFM) model [6]. Customers who have purchased Recently, Frequently, or 
have spent large sums of Money are deemed to have a higher value. In the e-banking 
world, we usually look at purchases and standing orders – a large number of 
transactions on a e-banking website for a given month indicates a high likelihood that a 
customer will repeat this pattern the following month. 
 
Recorded in the data are transaction date, and transaction value (dollar amount). To 
create a classical RFM analysis, a number of histogram bins must be manually selected 
for Recency, Frequency and Value variables. For instance, the Recency values might be 
separated into bins representing: customers with purchases within the last 7 days; 
between 8 and 30 days; and longer than 30 days.  
 
Segments are then created from the intersection of the bins. If there were three bins for 
each variable, then the resulting matrix would have 27 possible combinations.  The 
resulting segments can be ordered from most valuable (highest recency, frequency, and 
value) to least valuable (lowest recency, frequency, and value). See Table 4. 
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Table 4 
Classical RFM analysis of the data in Figure 9, sorted by segment value, highest value 

first. 
 
Recency (days) Frequency (days) Value ($) Relative Volume 

(%) 
less than 7 less than 7 greater than 200 0.00% 
less than 7 less than 7 100 to 200 0.51% 
less than 7 7 to 21 greater than 200 0.28% 
7 to 21 less than 7 greater than 200 0.05% 
less than 7 7 to 21 100 to 200 3.32% 
7 to 21 less than 7 100 to 200 0.70% 
7 to 21 7 to 21 greater than 200 0.47% 
less than 7 less than 7 less than 100 2.15% 
less than 7 greater than 21 greater than 200 0.66% 
greater than 21 less than 7 greater than 200 0.05% 
7 to 21 7 to 21 100 to 200 6.79% 
less than 7 7 to 21 less than 100 2.67% 
7 to 21 less than 7 less than 100 2.81% 
less than 7 greater than 21 100 to 200 2.15% 
7 to 21 greater than 21 greater than 200 1.69% 
greater than 21 less than 7 100 to 200 2.20% 
greater than 21 7 to 21 greater than 200 1.40% 
7 to 21 7 to 21 less than 100 4.21% 
7 to 21 greater than 21 100 to 200 4.26% 
greater than 21 7 to 21 100 to 200 19.52% 
less than 7 greater than 21 less than 100 0.37% 
greater than 21 less than 7 less than 100 9.36% 
greater than 21 greater than 21 greater than 200 3.79% 
7 to 21 greater than 21 less than 100 0.51% 
greater than 21 7 to 21 less than 100 15.87% 
greater than 21 greater than 21 100 to 200 11.89% 
greater than 21 greater than 21 less than 100 2.29% 
 
 
There are three main problems with the classical approach. Firstly, it’s very difficult in 
practice to choose appropriate bin start points and bin widths, without damaging the 
shape of the data. Any approach that requires a histogram be computed from continuous 
variables should be viewed with suspicion, in our opinion. The data are continuous, so 
use a continuous distribution (see Figure 10). 
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Figure 10; Frequency – Value plot for a classical RFM analysis of the data in Figure 9. 
Note that here the data points represent customers, not transactions, and the 
frequencies have been averaged for each customer. 
 
 
Secondly, the classical approach ignores customer demographics in building the RFM 
model. There may well be significant information in the data that helps to define 
purchasing segments. It should be apparent that affluent, 20-something homeowners will 
have different spending patterns than retired, 60-something tenants, yet the RFM 
algorithm will treat all the data as one demographic segment. 
 
Thirdly, this approach identifies the best, most reliable customers. These customers 
probably don’t need an incentive to make a repeat purchase; we want to focus our 
efforts on the customers who are on the point of defection, to win them back as cheaply 
as possible. Unfortunately, the classical algorithm can’t tell us how likely these 
customers are to remain with us. 
 
A probabilistic algorithm can perform a good deal better. We proceed with a dataset 
containing not just transaction history, but also customer demographics. Probabilistic 
RFM proceeds by computing the frequency of the transactions (difference between 
transaction dates), and adding frequency as a separate dimension to the dataset. Now a 
segmentation analysis of the type we have been discussing will separate market 
segments not just according to customer demographics, but also transaction value and 
frequency; that is, demographic spending pattern. Finally, the date and value of each 
customer’s final transaction to date is tested against this model, to yield a metric whose 
value is indicative of the customer’s likelihood of making another transaction. 
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Table 5 

Segmentation analysis of demographics and spending patterns for the data in Figure 9 
 
Segment No Relative 

Importance 
Age (mean) Gender Frequency 

(days) 
Value ($) 

1 (Red) 27.8% 39.8 F 39.4%
M 60.6%

 

7.0 +/- 5.4 44.38 
+/- 15.57 

2 (Green) 11.5% 63.6 F 60.6%
M 39.4%

 

26.1 +/- 22.1 224.22 
+/- 69.10 

3 (Blue) 60.7% 44.5 F 19.4%
M 80.6%

 

16.8 +/- 15.4 112.61 
+/- 40.26 

 
 

 
 
Figure 11; Segmented Frequency – Value model for the transaction data in Figure 9, 
summarized in Table 5. The ellipses represent 1 standard deviation contours around the 
center of each segment. 
 
 
Each customer’s demographic can then be tested simultaneously along with the 
customer’s transaction history against the segmentation model. If the segmentation 
model is probabilistic in nature, rather than getting a single “best” segment, our analysis 
yields the distribution across segments, that is, probabilities that each customer falls 
within each segment (see Figure 12). 
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Figure 12; Probabilistic segment assignments for the transaction data in Figure 9. Color 
blending round the boundaries of the segments indicates assignments that are spread 
over multiple segments. 
 
 
Given this distribution, and using the axioms of probability calculus [7], we can simply 
and quickly test the date of each customer’s final transaction against all the segments, 
with the net effect that we get the best possible estimate of the loyalty metric, as all 
possibilities have been considered at differing levels of probability. 
 
A final pay-off is that because the segmentation model is probabilistic, and we have 
computed the loyalty statistic by following the probability calculus, the loyalty metric is 
itself a properly defined probability, ranging from 0% (perfectly disloyal) to 100% 
(perfectly loyal). What you do with this metric is then up to you – we recommend a 
starting point of 50% loyal as a good place to try to influence the customer with fresh 
incentive, but the optimum actual figure is necessarily different in each case. Referring to 
Figure 13, we would like to influence the customers who have not yet defected (plotted 
red), and there is no need to target the customers still loyal (plotted green), so we aim at 
those customers plotted in a mid red/green shade. 
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Figure 13; Loyalties for the data shown in Figure 9. Note that in this chart, the data 
points represent customers, not transactions. A data point in green represents a loyal 
customer, red represents a disloyal customer. 
 
 

CONCLUSION 

Probabilistic models hold a number of advantages over classical techniques, including 
efficient use of data and tolerance to undefined data values. Further, a probabilistic 
model will not merely assign each customer a single demographic segment, but will 
compute the distribution of each customer over all segments. This avoids data points on 
the boundary between segments being “forced” into either, but admits the possibility of 
all possible assignments. A robust segmentation technique is essential to draw 
actionable conclusions about the effectiveness of a given marketing campaign, to 
identify cross-selling opportunities, or minimize the cost of acquiring new customers. 
Such a segmentation technique, given a purchasing history for each customer, can also 
yield better insights into overall spending patterns than classical techniques are able to 
provide. 
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