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Abstract 
 
In credit risk management, the Basel Committee provides a choice of three approaches 
for financial institutions to calculate the required capital; standardized approach, Internal 
Ratings-Based (IRB) approach, and Advanced IRB approach. The IRB approach is 
usually preferred compared to the standard approach due to its higher accuracy and 
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lower capital charges. The objective of this study is to use several parametric models 
(exponential, log-normal, gamma, Weibull, log-logistic, Gompertz) and non-parametric 
models (Kaplan-Meier, Nelson-Aalen) to estimate the probability of default which can be 
used for evaluating the performance of a sample of credit risk portfolio. The models are 
fitted to a sample data of credit portfolio obtained from a bank in Jordan for the period of 
January 2010 until December 2014. The best parametric and non-parametric models 
are selected using several goodness-of-fit criteria, namely MSE, AIC and BIC for 
parametric models and SE and MAD for non-parametric models. The estimated default 
probability is then applied to forecast the credit risk of a corporate portfolio at 99.9% 
confidence level and several time horizons (3 months, 6 months, 9 months, 1 year). The 
results show that the Gompertz distribution is the best parametric model, whereas the 
Nelson-Aalen estimator is the best non-parametric model for predicting the probability of 
default of the credit portfolio. 
 
Keywords: Survival; Credit Risk; Time to Default 
 
© Jamil J Jaber, 2017 

 
 

INTRODUCTION 
 
The assessment of credit risk is crucial for financial institutions such as banks and 
insurance companies. The Basel II Capital Structure published by the Basel Committee 
supervision in June 2006 requires that the financial institutions hold a minimum capital 
to cover the exposures of market, credit, and operational risks. Therefore, all banks and 
financial institutions are required to assess their portfolio risks, including credit risk. 
 
The Basel Committee provides a choice of three approaches for calculating the required 
capital: standardized approach (low complexity, low accuracy and high capital charge), 
Internal Ratings-Based approach (IRB) (medium complexity, medium accuracy, and 
medium capital charge), and advanced IRB approach (high complexity, high accuracy 
and low capital charge). The standardized approach provides improved risk sensitivity 
compared to the Basel I requirement. The two IRB approaches, which rely on the bank’s 
internal risks rating, are considerably more sensitive to risks. 
 
Based on the literature, several methodologies for modeling credit risk have been 
proposed since the introduction of the classical Z-score model by Altman [1] which is 
applied to verify the grant of credit of an applicant. As examples, the ZETA discriminant 
analysis model, which is constructed through the linear function of market variables and 
accounting, is able to differentiate between reimbursement and non-reimbursement of a 
credit borrower. The logistic regression model, which assumes that the cumulative 
probability has a logistic functional form, is able to predict the probability of a borrower’s 
default. Recently, the artificial neural network (ANN), which uses the artificial 
intelligence (AI) approach, has been considered for credit scoring [2-5]. 
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The modelling of credit risk based on survival analysis was first introduced by Narain [6] 
who applied the survival model to a 24-months credit data. Later, Thomas et al. [7] used 
the accelerated life exponential model to a sample data of 24-months credit information 
and compared the model with Weibull, Cox non-parametric and logistic regression 
models. Their study showed that the use of survival analysis in credit scoring is superior 
to the conventional strategies due to the support of estimated survival times in making 
credit decision. Another example can be found in Cao et al. [8] who studied several 
consumer credit risk models via survival analysis by fitting parametric models (Pareto, 
F-distribution, normal distribution, Weibull distribution and Cauchy distribution), non-
parametric model (Kaplan-Meier), and semi-parametric model (Cox) to the right 
censored data. Several other parametric, semi-parametric and non-parametric models 
were also applied to credit portfolio data, and these techniques can be found in 
Stepanova et al. [9], Malik et al. [10] and Man [11]. Recently, Luo et al. [12] applied a 
regression spline based on a discrete time survival model, and compared the model’s 
performance with the classical Cox model. In summary, a common feature of all these 
studies is that the survival analysis with parametric, semi-parametric and non-
parametric techniques have been applied for modeling the probability of default of credit 
portfolios. 
 
The objective of this paper is to estimate the probability of default (PD) using parametric 
and non-parametric models. The parametric and non-parametric models are fitted to the 
right-censored data obtained from a bank in Jordan for the period of January 2010 until 
December 2014. The estimated PD is then used for predicting the performance of credit 
risk of a corporate portfolio. The rest of the paper proceeds as follows. Section 2 
provides the methodology, while section 3 provides the data description and results. 
Finally, section 4 provides the conclusions. 
 

METHODOLOGY 
 
Worst-Case Default Rate (WCDR) 
 
The capital requirements for credit risk in Basel II Internal Rating Based (IRB) can be 
formulated using the Risk-Weighted Assets (RWA) formula. One of the elements 
required in the RWA formula is the Worst-Case Default Rate (WCDR) that depends on 
Vasicek’s Gaussian copula model. The WCDR equation is: 
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Where WCDR is the worst–case default rate for a time horizon t (usually one year), x is 
the confidence level (which is defined at 99.9% by Basel II regulators), PD is the 
probability that a loan will default at time t, and   is the copula correlation parameter for 

each pair of loans. 
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Based on empirical research, the Basel II assumes that the copula correlation 

parameter,  , and the PD has the following relationship: )1(12.0 50PDe . 

 

As an example, suppose that a bank has a total of USD50 million of exposures, a one-
year PD of 1.5% for each loan, the loss of 45% given the default of each loan, and the 

estimated correlation copula parameter of 176684.0]1[12.0 )015.0(50  e . 
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indicating that the 99.9% worst case default rate is 16.85%, and the losses when this 

worst case occurs amounted to USD3.79 million (USD50 mil  0.1685  0.45). This 
USD3.79 million is also the estimate of value-at-risk (VaR) for the credit portfolio at a 
one-year time horizon and 99.9% confidence level. 
 
The focus of this study is the estimation of PD of a credit portfolio based on several 
parametric and non-parametric models. The best model for PD is then selected using 
several goodness-of-fit tests. The estimated PD is then applied to forecast the WCDR at 
confidence level 99.9% and several time horizons (t=3 months, 6 months, 9 months, 1 
year). 
 
Survival Model 
 
Survival analysis is a statistical method whose outcome variable of interest is the time to 
the occurrence of an event which is often referred to as failure time, survival time, or 
event time. Survival data can be divided into three categories; complete, censored and 
truncated. Complete data is the ideal data that contains the begin and end dates of 
which the event time is determined. Censored and truncated data are also called 
missing data due to the unavailability of information on the begin or end dates. 
 
An observation is said to be truncated from below (above) or left (right) truncated, if 
when it is at or below (above) the truncation point it is not recorded, but when it is above 
(below) the truncation point it is recorded at its observed value. On the other hand, an 
observation is said to be censored from above (below) or right (left) censored, if when it 
is at or above (below) the censored point it is recorded as being equal to the censored 
point, but when it is below (above) the censored point it is recorded at its observed 
value [13]. 
 
Right censored data can be divided into three types: type I, type II and type III. Type I 
and type II are also called the singly censored data, while type III is also called the 
progressively censored data [14]. Another commonly used name for the type III 

censoring is random censoring. 
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Besides right censoring, there are also cases of left censoring and interval censoring. 
Left censoring occurs when it is known that the event occurred prior to time a, but the 
exact time of occurrence is unknown. On the other hand, interval censoring occurs 
when the event of interest is known to have occurred between times a to b. 
 
Our study uses the progressive right censored data for estimating the PD of a sample of 
credit portfolio in Jordan. The three main reasons for using the progressive censoring 
are: the period of study is fixed, the borrowers can enter the study at different times 
during the fixed period, and the borrowers may or may not default before the end of 
study. 
 
Suppose that T is the length of time before default. The randomness of T can be 
described in four standard ways; density function, survival function, distribution function 
and hazard function. 
 
The probability that the failure time occurs at exactly time t is given by the density 
function: 
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The probability that the time to event (T) is larger than a fixed time t is given by the 
survival function: 
 

                                   )Pr()( tTtS                                                             (3) 

 
The probability that the time to event (T) is smaller or equal than a fixed time t is the 
distribution function: 
 

  )(1)Pr()( tStTtF  .            (4) 

 
Finally, the incidence rate, or the instantaneous risk or force of mortality, or the event 
rate at time t among those at risks at time t, is known as the hazard rate function: 
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Therefore, the cumulative hazard rate function can be calculated as: 
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Parametric Models 
 
Fitting a parametric distribution to a sample of censored data has several advantages. 
Firstly, the survival and density functions for a parametric model, S(t) and f(t), are fully 
specified, and thus, can be easily used to estimate the quintiles of different distributions. 
In addition, the statistical tests involving the testing of parameters are more powerful 
and efficient. In short, the parametric distributions provide more statistical inference than 
the non-parametric distributions. Examples of commonly used parametric distributions 
for estimating survival curves are the exponential, log-normal, gamma, Weibull 
(proportional hazards), log-logistic and Gompertz. Table 1 provides the density, survival, 
hazard, and cumulative hazard functions for the commonly used parametric models. 
 
Let ti, i=1,2,….,n, be the sample of event times for loan. Let ci=1 if ti is an observed 
default time, and ci=0 if the observation is a censored loan data. Most commonly, ti is a 
right-censored data (ci=0), meaning that the observed data is a non-default case and 
has to exit the study due to the end of observation period. 
 
The likelihood for the parametric model is 
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where the density fi(ti) is the likelihood of an observed default time and Si(ti) is the 
likelihood of a censored data. The estimated parameters can be obtained by maximizing 
the likelihood in eqn (7). 
 
Table 1: Common parametric models for estimating survival curves. 
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Non-Parametric Models 
 
The non-parametric or distribution-free technique is less effective than the parametric 
method when the survival time is known to follow a theoretical distribution. However, the 
non-parametric model is more proficient when the appropriate theoretical distribution is 
not known. 
 
In the case of censored data, two common non-parametric techniques can be applied: 
Kaplan-Meier (KM) which is also known as product limit estimator (Kaplan and Meier) 
and Nelson-Aalen (NA) estimator (Aalen). The KM estimator estimates the median of 
survival function, whereas the NA estimator estimates the cumulative hazard rate 
function. The main advantage of using these two estimators is that they consider 
censored data. 
 
Suppose m individuals experience defaults in a portfolio of loans. Let 

 )()2()1( ...0 mttt
 
be the observed default times. In addition, let rj be the number 

of loans at risk just before tj, mj ,...,2,1 , and dj be the number of observed defaults at tj. 

The KM estimator of survival function S(t) is 
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where dj is the number of observed defaults at time tj, and rj is the number of loans at 
risks in the portfolio at time tj. The unbiased KM estimator of the cumulative hazard rate 

is )(ˆlog)(ˆ tStH  . 

 
It should be noted that the KM estimator is a step function that does not change 
between default times, nor at the time of censoring. The estimator only changes at the 
time of each default. 
 

The Nelson-Aalen (NA) estimator is used to estimate the cumulative hazard rate, )(ˆ tH , 

and is defined by 
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where dj is the number of defaults at time tj, and rj is the number of loan at risks at time 

tj. The NA estimator of the survival function can be obtained using )(ˆ)(ˆ tHetS  . 

 
Model Selection 
 
We use five types of accuracy criteria to select the best model; mean square error 
(MSE), standard error (SE), Bayesian information criterion (BIC), Akaike information 
criterion (AIC) and mean absolute deviation (MAD). The mean square error (MSE) is 
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where n is the sample size. The Bayesian information 

criterion (BIC) is based on the maximum likelihood estimates of the model parameters 
[15] which penalizes a sample with larger size and larger number of parameters, and 

the formula is BIC=2l + kp, where l is the log likelihood of the estimated model, p is the 
number of parameters, and k=log n. The Akaike information criterion (AIC) is also based 
on the maximum likelihood estimates of model parameters [16], but penalizes a sample 

with larger size. The formula AIC=2l  k*p, is where l is the log likelihood of the 
estimated model, p is the number of parameters, and k*=2. The standard error (SE) is 
usually estimated by the sample estimate of standard deviation of population (sample 
standard deviation) divided by the square root of sample size (assuming 

independence), 
n
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RESULTS 
 
Data Description 
 
The sample data of credit portfolio obtained for this study are collected from a bank in 
Jordan and contain confidential information on credit of loans. The monthly data of the 
credit portfolio were collected from January 2010 until December 2014. The size of 
portfolio is 4393, while the total number of defaults throughout the 5-year period is 495. 
For the sample data, a borrower is declared default when his/her cash instalment is not 
paid within 3 months. 
 
Table 2 provides the risk exposures (number of loans at risk) and number of defaults in 
each year. The highest number of defaults occurred in the second year, and the highest 
number of defaults per exposure also occurred in the same year (168 defaults from 
1125 exposures). Table 3 provides the summary statistics for the monthly data. The 
average monthly exposure is 73, while the average number of defaults per month is 8. 
 
Table 2: Number of exposures and defaults in each year. 
 

Year  exposure # of defaults % (# of defaults per exposure) 

    

2010 1265 137 10.83 

2011 1125 168 14.93 

2012 783 67 8.56 

2013 652 41 6.29 

2014 568 82 14.44 

Total 4393 495 - 

 
Table 3: Summary statistics for credit data (monthly). 
 

 Exposure per 
month 

# of defaults per 
month 

# of censored per 
month 

Min 29 0 23 

Max 272 33 254 

Mean 73.22 8.25 64.97 

Std. dev. 42.88 6.35 38.93 

Total (N) 4393 495 3898 

 
Parametric Model 
 
The estimated parameters for the parametric models can be obtained by maximizing the 
likelihood shown in eqn (7). The R software with flexsurv package is used in this study 
to fit the parametric models via maximum likelihood estimation [17]. The best parametric 
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model is then selected using several goodness-of-fit criteria such as MSE, AIC and BIC. 
 
Table 4 provides the estimated parameters, together with the standard errors, lower 
bounds and upper bounds. The MSE, AIC and BIC are also provided, and the best 
model is chosen based on the smallest MSE, and the largest AIC and BIC. The results 
in Table 4 show that the Gompertz distribution is the best parametric model since it has 
the smallest MSE, and the largest AIC and BIC. The maximum likelihood estimate of the 

Gompertz parameters are =0.0276 and =0.0196. 
 
For further comparison, Figure 1 shows the curve of survival function for all of the fitted 
parametric models. The fitted curves are compared to the non-parametric curve from 
Kaplan-Meier estimation. The graphs illustrate that the survival curve of Gompertz 
model is closest to the non-parametric curve compared to other models. 
 
Non-Parametric Model 
 
The R software with flexsurv package is used in this study to fit the non-parametric 
models to the sample data [17]. The package can be used to estimate the Kaplan-

Meier’s (KM) survival function, )(ˆ tS , and the cumulative hazard function, )(ˆ tH . The 

estimation of Nelson-Aalen (NA) is carried out using the survival function, )(ˆ tS , via Cox 

regression model without covariates [18]. The cumulative hazard function, )(ˆ tH , is then 

estimated using )(ˆ)(ˆ tHetS  . The best non-parametric model is selected using several 

goodness-of-fit criteria such as SE and MAD. 
 
Table 4: Estimated parameters and goodness-of-fit criteria for parametric models. 
 

Models Parameters Estimate SE 99% 
LCI 

99% 
UCI 

MSE AIC BIC 

Exponential   0.0357 0.0006 0.0343 0.0372 0.0035 33765.63 33772.02 

Log-normal   2.8992 0.0183 2.8521 2.9463 0.0057 34653.72 34666.49 

 1.1821 0.0134 1.1480 1.2172 

Gamma  1.2741 0.0254 1.2105 1.3411 0.0021 33628.24 33641.02 

 0.0462 0.0012 0.0433 0.0493 

Weibull 
(proportional 
hazards) 

 1.2543 0.0168 1.2117 1.2984 0.0016 33507.75 33520.52 

 0.0145 0.0009 0.0124 0.0171 

Log-logistic  1.5480 0.0210 1.4950 1.6030 0.0036 34516.51 34529.28 

 21.0100 0.3590 20.1050 21.9550 

Gompertz  0.0276 0.0010 0.0250 0.0302 0.0008 33079.91 33092.69 
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  0.0196 0.0006 0.0182 0.0212 

 
Figure 1: Fitted survival function for parametric models. a) Exponential distribution, b) 
Log-Normal distribution, c) Gamma distribution, d) Weibull distribution, e) Log-logistic 
distribution, f) Gompertz distribution. 
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Table 5 provides information on the exposure (number of risk) and number of defaults in 
each month for the sample data [19,20]. The Table 5 also provides the estimates of 
survival and cumulative hazard functions for the NA and KM in each month. The results 
indicate that the survival estimates of NA are slightly larger than KM over the 60 months 
period. On the contrary, the estimates of cumulative hazard of KM are larger than NA 
over the study period. 
 

In terms of standard error of )(ˆ tS , the estimates of KM are larger than NA during the first 

31 months, followed by almost no differences between both estimates over the next four 
months. After that, the estimates of NA are larger than KM in the duration of 36 to 60 
months. 
 
Table 5: Estimates of and for non-parametric models. 
 

Time 
(in mth) 

 

Monthly 
exposure 

 

# of non-
censoreds 

 

Nelson-Aalen (NA) Kaplan-Meier (KM) 

)(ˆ tH  )(ˆ tS  Std. 
err 

)(ˆ tH  )(ˆ tS  Std. 
err 

1 272 254 0.058 0.944 0.0034 0.060 0.942 0.0035 

2 160 145 0.093 0.911 0.0043 0.095 0.909 0.0043 

3 192 178 0.138 0.871 0.0050 0.141 0.868 0.0051 

4 80 67 0.156 0.856 0.0053 0.159 0.853 0.0054 

5 112 100 0.183 0.833 0.0056 0.187 0.830 0.0057 

6 48 38 0.193 0.824 0.0057 0.198 0.821 0.0058 

7 112 101 0.222 0.801 0.0060 0.227 0.797 0.0061 

8 64 55 0.238 0.788 0.0062 0.243 0.784 0.0062 

9 48 40 0.250 0.779 0.0063 0.255 0.775 0.0063 

10 64 55 0.267 0.766 0.0064 0.272 0.762 0.0065 

11 49 39 0.279 0.757 0.0065 0.284 0.753 0.0066 

12 64 55 0.296 0.744 0.0066 0.301 0.740 0.0067 

13 73 61 0.316 0.729 0.0067 0.321 0.726 0.0068 

14 81 67 0.338 0.714 0.0069 0.343 0.710 0.0069 

15 121 92 0.368 0.692 0.0070 0.374 0.688 0.0071 

16 101 83 0.398 0.672 0.0071 0.404 0.668 0.0072 

17 115 102 0.435 0.648 0.0073 0.442 0.643 0.0073 

18 130 112 0.477 0.621 0.0074 0.485 0.616 0.0075 

19 112 108 0.520 0.594 0.0075 0.529 0.589 0.0076 

20 109 96 0.560 0.571 0.0076 0.570 0.566 0.0076 

21 97 85 0.597 0.550 0.0076 0.608 0.545 0.0077 

22 78 68 0.628 0.533 0.0077 0.639 0.528 0.0077 

23 56 46 0.650 0.522 0.0077 0.661 0.516 0.0077 

24 52 37 0.668 0.513 0.0077 0.680 0.507 0.0077 

25 67 57 0.697 0.498 0.0077 0.709 0.492 0.0078 

26 72 63 0.729 0.482 0.0077 0.742 0.476 0.0078 

27 83 72 0.768 0.464 0.0077 0.781 0.458 0.0078 
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28 67 64 0.804 0.448 0.0077 0.818 0.442 0.0078 

29 74 71 0.845 0.429 0.0077 0.860 0.423 0.0077 

30 90 85 0.897 0.408 0.0077 0.913 0.401 0.0077 

31 76 70 0.942 0.390 0.0076 0.959 0.383 0.0076 

32 57 51 0.977 0.377 0.0076 0.995 0.370 0.0076 

33 61 56 1.016 0.362 0.0075 1.035 0.355 0.0075 

34 53 50 1.053 0.349 0.0075 1.072 0.342 0.0075 

35 36 33 1.079 0.340 0.0075 1.098 0.334 0.0075 

36 47 44 1.113 0.329 0.0074 1.133 0.322 0.0074 

37 49 46 1.151 0.316 0.0073 1.172 0.310 0.0073 

38 59 56 1.199 0.302 0.0073 1.221 0.295 0.0072 

39 54 54 1.247 0.287 0.0072 1.271 0.281 0.0071 

40 48 46 1.291 0.275 0.0071 1.315 0.268 0.0071 

41 63 60 1.350 0.259 0.0070 1.376 0.253 0.0069 

42 59 53 1.406 0.245 0.0069 1.434 0.238 0.0068 

43 70 60 1.474 0.229 0.0067 1.504 0.222 0.0067 

44 65 63 1.551 0.212 0.0066 1.584 0.205 0.0065 

45 62 58 1.628 0.196 0.0064 1.664 0.189 0.0063 

46 46 41 1.687 0.185 0.0063 1.725 0.178 0.0062 

47 35 35 1.741 0.175 0.0061 1.781 0.168 0.0061 

48 42 39 1.805 0.164 0.0060 1.847 0.158 0.0059 

49 29 28 1.855 0.157 0.0059 1.898 0.150 0.0058 

50 38 36 1.921 0.146 0.0058 1.967 0.140 0.0056 

51 30 27 1.975 0.139 0.0056 2.022 0.132 0.0055 

52 36 30 2.039 0.130 0.0055 2.088 0.124 0.0054 

53 29 25 2.097 0.123 0.0054 2.147 0.117 0.0053 

54 48 40 2.195 0.111 0.0052 2.251 0.105 0.0050 

55 42 37 2.298 0.100 0.0050 2.360 0.094 0.0048 

56 68 61 2.491 0.083 0.0046 2.575 0.076 0.0044 

57 33 30 2.612 0.073 0.0044 2.704 0.067 0.0042 

58 35 31 2.757 0.064 0.0041 2.859 0.057 0.0039 

59 29 23 2.884 0.056 0.0039 2.996 0.050 0.0037 

60 151 118 3.666 0.026 0.0026 4.517 0.011 0.0019 

 
For a more consistent measure of goodness-of-fit, we use the total difference of 99% 
confidence interval (CI) and the MAD as our selection criteria for choosing the best non-
parametric model [21-25]. The results of the selection criteria (99% CI difference and 
MAD) for the non-parametric models are provided in Table 6. The results show that the 
NA estimator is better than the KM estimator, as shown by the smaller values of 99% CI 
difference and MAD for the estimates of survival function, cumulative hazard function 
and standard error. 
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Table 6: Estimated parameters and goodness-of-fit criteria for parametric models. 
 

 Selection 
criteria 

Nelson-Aalen 
(NA) 

Kaplan-Meier 
(KM) 

SE of S(t) 99% CI diff. 0.00083 0.00088 

MAD 0.00100 0.00104 

Survival function, S(t) 99% CI diff. 0.17742 0.17840 

MAD 0.23096 0.23219 

Cumulative hazard function, H(t) 99% CI diff. 0.55026 0.59650 

MAD 0.66431 0.69567 

 
For further comparison, Figure 2 shows the fitted curve of survival function for the KM 
and NA models. The plots show that both estimates are similar, and have decreasing 
patterns throughout the 5-year period. 
 
Worst Case Default Rate for Credit Portfolio 
 
As mentioned previously, the focus of this study is to estimate the probability of default 
(PD) which can be applied to forecast the worst case default rate (WCDR) of a credit 
portfolio at confidence level x and time horizon t. The WCDR can be estimated using 
Vasicek’s Gaussian copula model as shown in eqn (2), while the copula correlation 
parameter can be obtained using the empirical results of Basel II where 

)1(12.0 50PDe . Assuming that the PD follows the Gompertz model (best parametric 

model) with parameters =0.0276 and =0.0196, the estimates of PD, copula 
correlation and WCDR at 99.9% confidence level and several time horizons are 
provided in Table 7. 
 
Table 7: Default probability, copula correlation and WCDR. 
 

 3 months 6 months 9 months 1 year 

Default prob 0.0049 0.0098 0.0147 0.0197 

Copula 
correlation 

0.2139 0.1934 0.1774 0.1649 

WCDR 0.0967 0.1391 0.1673 0.1890 

 
The results in Table 7 show that both PD and WCDR increase during the one-year 
period, but the copula correlation decrease in the same period. As expected, the PD and 
WCDR has a positive relationship (higher PD resulted in higher WCDR), while the PD 
and copula correlation has a negative relationship (higher PD resulted in lower copula 
correlation) [26,27]. 
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Figure 2: Fitted survival function for non-parametric models. a) NA, b) KM, c) NA and 
KM. 
 

 
 

CONCLUSION 
 
This paper has estimated the probability of default (PD) by fitting parametric and non-
parametric models to a sample of credit portfolio obtained from a bank in Jordan for the 
period of January 2010 until December 2014 [28-31]. The best parametric model is the 

Gompertz model with parameters =0.0276 and =0.0196, while the best non-
parametric model is the Nelson-Aalen estimator. 
 
The parametric distribution has the advantage of providing more statistical inferences 
compared to the non-parametric distribution. The survival and density functions of 
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parametric distribution are fully specified and can be easily used to estimate different 
quintiles for different distributions. The parametric model also has more tests that are 
statistically powerful and efficient. However, the non-parametric model is more proficient 
than the parametric model when the appropriate theoretical distribution is not known. 
The main advantage of using the non-parametric models of KM and NA estimators is 
that both estimators consider censored data and the estimates of survival and 
cumulative hazard be computed using simple formulas. 
 
In this study, the estimated PD from Gompertz model is used for forecasting the worst 
case default rate (WCDR) of a credit portfolio at 99.9% confidence level and several 
time horizons. The WCDR is one of the elements required to calculate the Risk-
Weighted Assets (RWA), which is the formula for calculating the capital requirements in 
Basel II Internal Rating Based (IRB) [32-34]. The results show that the estimates of PD 
and WCDR increase during the one-year period, while the estimates of copula 
correlation decrease during the same period. The results are expected since the PD and 
WCDR has a positive relationship as shown by the WCDR formula in eqn (1), while the 
PD and copula correlation has a negative relationship as shown by the formula, 

)1(12.0 50PDe . 

 
For further study, we plan to incorporate the macroeconomic effects in the prediction of 
PD. In addition, the concept of risk-transfer through insurance policies for reducing the 
credit risk of portfolio can be considered, and studies on the prediction of PD which 
takes into account insurance policies for reducing credit risks will be carried out in future 
studies. 
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