
JIBC

[Home] [Current Edition] [Compendium] [Forum] [Web Archive] 
[Email Archive] [Guestbook] [Subscribe] [Advertising Rates]

Alternate Architecture for Domain Name System to foil 
Distributed Denial of Service Attack

Journal of Internet Banking and Commerce, April 2006, vol. 11, no.1
(http://www.arraydev.com/commerce/jibc/)

P.Yogesh, Senior Lecturer, Department of Computer Science and Engineering, College of
Engineering, Anna University, Chennai-600025, India.
Dr.A.Kannan, Assistant Professor, Department of Computer Science and Engineering, College
of Engineering, Anna University, Chennai-600025, India. 

Web: http://www.annauniv.edu/ 
Email: yogesh@annauniv.edu kannan@annauniv.edu

P.Yogesh received his B.E and M.E degrees in Computer Science and Engineering from Madurai
Kamaraj University, India,and is currently working as a Senior Lecturer and also working toward the
Ph.D. degree at the Department of Computer Science and Engineering, College of Engineering, Anna
University, Chennai, India. His main research interests span various areas in computer communication
networks, including high performance networks, wireless and ad hoc networks and multimedia
communication. 

A.Kannan received his M.E and Ph. D degrees in Computer Science and Engineering, from Anna
University, Chennai, India. He is working as an Assistant Professor in the Department of Computer
Science and Engineering, College of Engineering, Anna University, Chennai, India. His current research
interests focus on Database Management Systems, Data Mining and Warehousing, Artificial Intelligence
and Computer Networks.

Abstract

The Domain Name System is an important part of the Internet infrastructure and maps symbolic
Domain Names to IP addresses. The DNS is a hierarchically arranged distributed database. At
the top of the hierarchy is the root. The root is a single point of failure in the DNS architecture. It
has been subject to variety of Denial of Service (DoS) attacks. Eliminating the root from this
architecture eliminates the single point of failure. This involves storing the addresses of the top-
level domain servers at the name servers, so that they can be reached without going through the
root. In this paper we propose two architectures, both capable of foiling the DoS attack. The
architectures differ in the capabilities of the clients and servers, and provide different cost-
benefit tradeoffs. It has been found that a scheme that avoids a root server for name resolution
and includes caching capabilities at the client itself, reduces bandwidth requirements, and
improve! s response times, resilience to DoS attacks.

1. Introduction

The Domain Name System (DNS) is a distributed database of information about hosts on the Internet.

http://www.arraydev.com/commerce/JIBC/
http://www.arraydev.com/commerce/JIBC/
http://www.arraydev.com/commerce/JIBC/current.asp
http://www.arraydev.com/frames/f-guest_comp.htm
http://www.arraydev.com/commerce/JIBC/forum.asp
http://www.arraydev.com/commerce/JIBC/articles.htm
http://www.arraydev.com/commerce/JIBC/archive/
http://www.arraydev.com/frames/f-guest.htm
http://www.arraydev.com/commerce/JIBC/adm.htm
http://www.arraydev.com/commerce/JIBC/private/index.htm
http://www.arraydev.com/
http://your%20web%20site/
mailto:YOUR%20EMAIL%20ADDRESSS
mailto:YOUR%20EMAIL%20ADDRESS


JIBC

Its function is to make that information available over the entire Internet. â€œDistributedâ€ signifies that
the information in the DNS is spread over multiple computers. The Domain Name System provides a
means of retrieving that information from anywhere on the network.

Through the 1970s, just a few hundred hosts populated the ARPANET, an experimental wide-area
computer network across the United States. All the information about these hosts was stored in a single
file, HOSTS.TXT. The Network Information Center (NIC) of SRI, an independent, non-profit R & D
organization in Menlo Park, California maintained it. Changes for the file were submitted to the NIC, and
compiled into a new HOSTS.TXT once or twice a week [1]. As the number of hosts grew very large,
problems arose with HOSTS.TXT. The network traffic and processor load on SRI-NIC was becoming
uncontrollable. There was no authority over host names as well. There was nothing to prevent someone
from adding a host with a conflicting name and breaking the entire system. Another problem was
maintaining consistency of the file across the entire network. Changes to the hosts or additions were
being made before a copy of the file could reach all of the ARPANET.

This system of a flat name space did not scale well. A name space system should ensure the
uniqueness of names, allow local administration of data, and be available to the rest of the Internet.
Keeping data up-to-date would be much easier then. Paul Mockapetris proposed a solution to this
problem by designing, the Domain Name System. [2]. This new architecture involves a hierarchical
name space. In this design, uniqueness of names is easily ensured. Keeping data up-to-date is much
easier with local management and implementation of zones of authority.

The Domain Name System is a distributed hierarchical system for resolving host names into IP
addresses. The DNS has a root domain at the top of the hierarchy and directly below are the top-level
domains. The root of the tree has no name. All siblings of a domain must have unique names. Children
of a domain are called subdomains of the parent [3]. The structure of the DNS name space is similar to
the structure of the file system on a computer, with the root at the top. In DNS, the root is written as a
single dot "." in text. Each partition of the database represents a domain. Each partition can be divided
further into subdomains. A domain also has a domain name, which identifies its position in the
database. In DNS, the full domain name is the sequence of labels from the domain to the root, with
dots separating the labels. In a computer file system, the names of the directories are read from the
root to leaf. Making names hierarchical eliminates the probl! em of name collisions. An organization's
registered domain name is unique, which makes them free to choose any names they wish within their
domains. Whatever name they choose, it will not conflict with other domain names, since it will have
their unique domain name tacked onto the end of it.

At the top of the DNS hierarchy is the root. The data in the root zone is replicated in 13 computers
around the world. These servers contain the key records, which store the addresses of the top-level
domain names along with their IP addresses. The IP addresses of the root servers are well known to all
resolvers. Resolvers contact one of these servers for information about top-level domains. In the
absence of more specific information, name resolution begins at the root. Since these servers are
crucial to successful domain name resolution, they have been repeatedly subject to a kind of attack
known as the distributed denial of service attack.

Attackers take control of several machines on the Internet and use them to send a flood of queries to
the root servers to overwhelm them. Fortunately, the root servers themselves handle only a small
fraction of domain name queries. This is because the name servers that query them, cache the
responses, generally for 48 hours. Only if the root servers are still unavailable would the average user
be affected. If the attack succeeds, web, email and other services that depend on the DNS would
gradually become unusable. In this paper we propose two architectures to overcome the problems of
the existing DNS. In the first modified architecture, the root server is eliminated. This requires storing
the IP addresses of the top-level domains (TLD) in the name servers. The second architecture also
eliminates root server. In addition, the client module is able to perform caching and recursive querying.

2. Related Work

Paul Mockapetris designed the DNS of the Internet [2]. Paul Albitz and Cricket Liu helped to
understand the working of the DNS through an Open Source System tool called BIND [4]. BIND is one
of the most popular tools for managing domains on the Internet. Milton Mueller explained the
shortcomings of ICANN, the organization that establishes the policies that govern the domain name
system. The issues in the internationalization of the DNS [5] have been touched upon by Vinton G Cerf



JIBC

while tracing the evolution of Internet Technologies. Dan Pei and Lixia Zhang discussed the possibility
of a DoS attack on the DNS [6] and means to secure the System against such attacks. They also
provided a classification scheme of the various threats and countermeasures. Stephen Cherry gives a
description of a real DoS attack in. Chakrabarti and Manimaran have classified various possible attacks
over the Internet into four categories [7] namely DNS hacking, routing table poison! ing, packet
mistreating and DoS.

Gerco Ballintijn, Maarten van Steen and Andrew Tanenbaum have proposed [8] a new scheme to
improve both scalability and usability in naming replicated resources on the web. Jung, Sit,
Balakrishnan and Morris have analyzed the performance of cached DNS [9] with respect to the
distribution of name popularity and the distribution of TTL (Time To Live) values. Richard Liston, Sridhar
Srinivasan and Ellen Zegura [10] have investigated the degree to which metrics for wide-area DNS
performance such as mean response time, number of servers contacted, and root and generic top-level
domain server performance, differ across locations in the Internet.

Garber has discussed the Distributed Denial of Service (DDoS) attack over the Internet and the
potential of these attacks to shut down the web sites and thereby the business involved [11]. Michael F
Schwartz and Calton Pu have discussed the general framework for gathering and harnessing widely
distributed information in a diverse and growing internet environment [12].

3. Problem Description

The root name servers have information about the authoritative servers for the top-level domains. They
are at the top of the DNS hierarchy. If no other information is available, resolution has to begin at the
root. Thus, they are crucial to the operation of the Internet. If they were unavailable for an extended
period, all resolution on the Internet would fail. To alleviate the load on the root servers, the
intermediate servers cache responses so that further requests for information about the same domain
can be serviced from the local cache. Fig. 1. depicts the existing architecture of the DNS.

Restrictions in the size of the UDP queries on the DNS limit the number of root servers to 13. These
are identified by a letter prefix that varies from A to M. However, there are more than 100 root servers in
operation now. They are located in every part of the globe. This is accomplished through a technique
known as anycasting. Anycasting is a technique by which the same IP address is assigned to multiple
computers on the Internet [13]. They are used as mirrors to provide the same service at different points
in the network. Requests are routed to the nearest mirror. Three of these root servers are in India. They
are the F-root server at Chennai, I- root server at Mumbai, and the K-root server at Noida (Delhi). All
root servers are on an equal footing. In the past, the zone file was distributed to the other operators
from the A-root server. The distribution of the zone file has since been changed. All root severs load a
file that has been produced by Inte! rnet Assigned Numbers Authority (IANA). After being produced by
the IANA, the file is stored on a number of distribution servers. The IP addresses and locations are
hidden to make them less susceptible to malicious attacks and hence they are often known as hidden
servers. The root name server operators fetch the file from these servers in a secure fashion. Each
operator then distributes the file to the servers they operate in the manner they choose.

The size of the root zone file is small and it changes very infrequently. To reduce the loads on the root
servers, the records they serve have a TTL value of 48 hours. In spite of anycasting and the large TTL
values for the entries, load at the root servers remains high; close to 1,00,000 queries per second. To
reduce the load on the name servers, recent versions of the name server software cache negative
responses as well. It has also been found that a substantial number of queries are those that are trying
to perform inverse lookup on the private IP address range.



JIBC

Inverse lookup is when programs try to find the domain name from a particular IP address. They form a
significant part of the DNS traffic. The private IP address range is meant for use on intranets and
should never leak into the Internet. However, such leaks happen due to misconfigured clients and
servers. Moreover, some of the older name-server software donâ€™t cache negative responses,
resulting in such traffic repeatedly reaching the root servers. To overcome this problem, servers known
as blackhole servers or prisoners are used. When such queries arrive at the root servers the root
servers respond with the IP address of the blackhole servers. This prevents the name servers from
retrying the same query with the root server. They contact only the blackhole servers thereafter. The
blackhole servers in turn answer such queries with authoritative "doesnâ€™t exist" replies. The client
may retry the query, but now the local name server, which has cached the res! ponse from the root,
contacts the blackhole server, without going through the root server.

To start resolution, when the cache is empty the resolver needs to know the IP address of the root.
These addresses are hard-coded into the resolver library routines. The resolvers use the Round Trip
Time (RTT) as a metric to identify the nearest root server. At the beginning, these servers are assigned
random RTT values lower than any real world value, so that each server is tried at least once.

3.1 Alternate Routes

ICANN, a nonprofit organization, created by the US Department of Commerce is the governing body for
the top-level domains of the Internet. It makes decisions regarding addition of new Top Level Domains
(TLD), the ownership of these TLDs, and oversees the domain-name registrars that sell and control
domain names. The addition of new TLDs has not matched the market demand. Some people believe
that this paucity is deliberately maintained to favor large corporations. For this, as well as ideological
reasons numerous people have started running their own root servers. Prominent among those are the
roots of AlterNIC (stopped), Pacific Root and New.Net. With these operators, we can register names in
domains such as. glue, .geek, .parody, .corp, .fam, .per, .web, .job, .lib, .ppp, .sat, .www, .men, .not,
.ngo, .tech, .game, .mp3, .med, .club, .law, .family, .sport as well as names in other European
Languages. Setting up a root server is technically trivial. The d! ifficulty is in getting people to configure
their name servers to query these servers. Some operators such as New.net have tried to overcome
this problem by extending Internet Corporation for Assigned Names and Numbers (ICANN)â€™s root
rather than modifying them, i.e. they retain the entries in the ICANNâ€™s root as they are and add their
own entries. They then persuade Internet Service Providers to have their name servers refer to these
servers as the root servers. They also provide browser plugins that modify the resolvers of web
browsers so that they query New.netâ€™s servers bypassing the local name server as well as the
ICANN administered roots.

3.2 Denial of Service

As explained in the previous section, the root server is crucial for successful name resolution. So most
Denial of Service (DoS) attacks target the root server though other servers can be targeted as well.
One popular method of DoS known as the Distributed Denial of Service (DDoS) attack is
explained as in Fig. 2.



JIBC

The root servers contain the key records that store the top-level domain names along with the IP
addresses of their authoritative servers. The IP addresses of the root servers are well known to all
name servers. The name servers are programmed to contact one of these servers for information about
top-level domains. To accomplish DoS, attackers take control of several machines on the Internet and
use them to send a flood of queries to the root servers to overwhelm them.

Another method takes advantage of negative responses i.e., responses that indicate the domain name
in the query cannot be resolved. Sending back the negative response for a DNS name that could
otherwise be resolved, results in a DoS for the client wishing to communicate with the domain in the
query. The other way DoS is accomplished is for the rogue server to send a response that redirects the
client to a different system that does not contain the service the client desires.

4 Proposed Scheme

4.1 DNS without Root Server

In the first modified architecture, the root server is eliminated. This requires storing the IP addresses of
the top-level domains in the name servers. The advantage of this scheme is that one query-response
sequence is eliminated before a request from a client is serviced. It also provides better resilience to
DoS attack since the single point of failure in the architecture is eliminated. The attacker now has to
target many more servers to achieve denial of service. The drawback is a slight increase in memory
requirements at the name server since it has to store the IP addresses of all the top-level domains
rather than that of the root server alone. This increase is of the order of a few kilobytes and is
negligible.

All modules other than the name server are same as before. The name server has been modified
to contact the servers of the top-level domains directly. The root server is absent. To achieve
DoS, the malicious client now has to send strings to all the top-level domains, which
necessitates additional processing. The number of strings received per server in a given period
is reduced allowing query resolution to proceed normally even while an attempted DoS attack is
on. This is depicted as in fig 3.

4.2 Rootless DNS with Client Caching

The root server is not present in this architecture as well. In addition, the client module is able to
perform caching and recursive querying. This helps to cut down traffic between the client and the name
server since a repeated request is serviced at the client itself. Security is further enhanced since most
name resolution can proceed when in addition to the top-level domain servers; the local name server
itself is under attack. The other modules are the same as in the previous case.

5. Implementation



JIBC

To demonstrate the DoS attack, a DNS architecture is setup by creating separate modules for the DNS
client, the DNS server, the com, org and edu top level domain servers and the root server. Query
resolution proceeds as follows: the client sends the domain name that it wants resolved into an IP
address to its local name server. The name server checks its own cache to see if the sought mapping is
available. If the mapping is available, it supplies the mapping from its cache itself. Else, it contacts the
root server for the IP address of the corresponding top-level domain. From this response, it contacts
the top-level domain for the IP address of the domain. If such a domain exists, the top-level domain
returns its IP address, which the name server forwards to the client. The name server also caches this
response, so that further requests for the same IP address can be supplied from its cache itself. The
client uses this IP address for communication with t! he host. This client module is part of many
applications that need to communicate over the Internet. So its implementation is kept as simple as
possible. Its capability is limited to formulating a request and forwarding it to a local name server.
Specifically, it is not programmed to cache responses. Hence, it is also known as a stub resolver. Thus
if some application needs the IP address of the same domain name, the client has to make a fresh
request to the local name server.

DoS attack occurs when malicious clients flood the root server with a large number of random queries.
Normally, the attackers take control of many hosts and use these hosts to flood the root servers to
cause maximum disruption. The root servers are tied up servicing these queries that requests from
legitimate clients get poor or no response.

5.1 DNS Client

The DNS Client possesses a domain name and requires the corresponding IP address. The client that
performs this function is also known as the resolver. Since the resolver has to be part of many
applications, it is normal practice to keep it as simple as possible. Its capability is limited to formulating
a request and forwarding it to the local name server. It does not perform any function such as caching
of responses. Hence, it is also known as the stub resolver. It merely accepts a domain name from the
application and forwards it as a request to the local name server. It then accepts the response from the
name server and passes it on to the application.

5.2 Name Server

The name server accepts requests from the client and returns the corresponding IP address. It does
this through a process known as recursive querying. As soon as it receives a request, it searches its
own cache to see if that domain name is already present. If present, it supplies the IP address to the
client immediately. If not, it contacts the root server for the IP address of the corresponding top-level
domain. With this IP address, it contacts the top-level domain for the required domain. It passes the
reply to the client and caches the response. Any further requests for the same IP address are serviced
from the cache.

5.3 Root Server

The root server contains the IP addresses of the authoritative servers of the top-level domains. There
are more than 250 top-level domains in the DNS. These include the country-code domains as well as
the generic domains. Any domain name can be resolved by following the list of authoritative servers
starting with the root domain. When the name servers contact the root servers, they respond by
providing the IP addresses of the corresponding top-level domains.

5.4 Com, Org, Edu Domain Servers

These servers contain the records for the domains registered under them. Their function is similar to
that of the root servers, namely to provide the IP address of the record that matches the domain name
in the request.



JIBC

5.5 Malicious Client

The malicious client generates random strings and sends them to the root servers seeking their IP
addresses. The root server is so busy with servicing these requests that at the time of this DoS attack,
it is unable to respond to legitimate queries from name servers.

5.6 Algorithms

Algorithm1 simulates the DoS attack over DNS with root server. From this we observe that when the
DoS attack is taking place, the root server is unable to respond to queries from the name server and
once the DoS attack stops, query resolution proceeds normally. Algorithm 2 simulates the DoS attack
over DNS without root servers and cached name servers. This algorithm proves that even while the
DoS attack is taking place, DNS is able to resolve the queries successfully. Reason is malicious clients
are not able to disturb the functioning of the TLDs because of their large numbers. Algorith 3 simulates
the DoS attack over DNS without root servers and cached clients. Here also DNS attack is thwarted,
and as far as possible, client resolves the requests locally.

Algorithm 1 - DoS Attack over DNS with root servers
Input: Domain Name to be resolved
Steps:
1. Client sends request to name server
2. Name server checks its cache for the domain name. If a matching entry exists, the corresponding IP
address is send to the client. Else, the name server asks the root server for address of the
corresponding authoritative TLD Server.
3. Name server asks the TLD Server for the IP address of the domain name.
4. Name server caches the response and returns reply to the client.
5. Malicious client begins attack by flooding the root server with random strings.
6. While the DoS attack is taking place, the root server is unable to respond to queries from the name
server.
7. Once the DoS attack stops, query resolution proceeds normally.
Output: IP address corresponding to the input string if DoS does not take place, otherwise DNS fails.

Algorithm 2 â€“ DoS Attack over DNS without root servers
Input: Domain name to be resolved.
Steps:
1. Client sends request to Name Server
2. Name Server checks its cache for the record. If a match exists, the IP address is send to the client.
Else, the Name Server asks the TLD server for the IP address of the domain.
3. Name Server returns reply to the client.
4. Malicious client begins attack by flooding the top-level domain servers with random strings.
5. Even while the DoS attack is taking place, query resolution proceeds normally.
Output: IP address corresponding to the domain name

Algorithm 3 â€“ DoS Attack over DNS without root servers and Cached clients
Input: Domain name to be resolved.
Steps:
1. Client receives string to be resolved.
2. Client checks its cache for the query. If a matching entry exists, the corresponding IP address is
send to the application. Else, the client asks the name server for the IP address of the input string.
3. Name server returns reply to the client.
4. Malicious client begins attack by flooding the top-level domain server with random strings.
5. Even while the DoS attack is taking place, query resolution proceeds normally.
Output: IP address corresponding to the input string.

5.6 Performance Analysis of Root Servers in the Internet



JIBC

Table I gives the average time taken to reach each of the 13 root servers. These are the averaged
values of experiments performed over different days and at different times of the day. There are
substantial delays in the case of some servers and worse; some servers are unavailable some or all the
time. A name server that contacts one of these servers has to make another request and wait for its
response.

It is seen that the average time to reach a root server in the case of available servers is 285ms.
Average database access times (command processing time + rotational latency + seek time) are about
6ms. So, the time elapsed before a response in case a functional server is contacted is 291ms.
However, 3 out of the 13 servers are unreachable and there is a 3 in 13 chance that it is one of these
that the name server will try to contact first. In such cases, the name server will have to make another
request to a working root server to get the address of the top-level domain server. Accounting for this,
the average time elapsed before the name server gets the address of the top level domain server is



JIBC

360ms. This delay is averted in the proposed architectures. The price to be paid in the form of
additional memory requirements is about 10KB (10,150 bytes) at each name server. This price is
negligible considering the improved performance and security.

Both the proposed schemes provide an improvement of about 360ms per request that would otherwise
have gone to a root server. Response from a local name server is practically instantaneous. Therefore,
there is no further performance gain to be had in caching the responses at the client. However, the
resilience of the architecture is further improved, since name resolution can now proceed even if the
local name server itself is under attack or unavailable for other reasons.

6. Conclusions and Future Work

This work modeled the existing architecture of the DNS and one of the most common attacks on the
DNS namely the distributed denial of service attack. It suggests means of foiling these attacks through
alternate architectures. Two architectures have been proposed, both capable of foiling the DoS attack.
The architectures differ in the capabilities of the client and server, and provide different cost-benefit
tradeoffs. It has been found that a scheme that avoids a root server for name resolution and includes
caching capabilities at the client itself, reduces bandwidth requirements, and improves response times,
resilience to DoS attacks at a modest increase in the complexity and memory requirements of the client.

TTL values are usually set very conservatively. Some experiments suggest that up to 85 percent of data
that is timed out at the name servers is still valid. Performance can be further improved if the
application begins the process of establishing communication with the IP address in the timed out
record while the name server fetches the new record. If the IP addresses in the timed out and new
records match, as is very likely, then the communication can continue. Only in the rare case of a
changed address has fresh communication to be initiated.

References

1. Paul Mockapetris, â€œDNS Encoding of Network Names and Other typesâ€, RFC 1101, April 1989.

2. Paul Mockapetris and Kevin Dunlap, â€œDevelopment of the Domain Name Systemâ€ Proceedings
of SIGCOMM â€™88, Computer communication Review Vol. 18, No. 4, August 1988, pp. 123-133.

3. Cachin C., Samar A., â€œSecure Distributed DNSâ€, IEEE International Conference on Dependable
Systems and Networks, , July 2004, pp. 423-432.

4. Paul Albitz and Cricket Liu, â€œDNS and BIND, Fourth Edition.â€ Oâ€™Reilly and Associates,
Incorporated, 2001. 

5. Vinton G. Cerf, â€œOn the Evolution of Internet Technologiesâ€, Proceedings of the IEEE, Vol. 92,
No. 9, September 2004, pp. 1360-1370.

6. Dan Pei, and Lixia Zhang,â€ A Framework for Resilient Internet Routing Protocolsâ€, IEEE Network,
March/April 2004, pp. 5-12.

7. Chakrabarti A., Manimaran G., â€œ Internet Infrastructure Security: A Taxonomyâ€, IEEE Network,
Volume 16, Issue 6, December 2002, pp. 13-21.

8. Gerco Ballintijn, Marten van Steen, Andrew S. Tanenbaum, â€œScalable Human-Friendly Resource
Namesâ€, IEEE Internet Computing, Volume 5, Issue 5, October 2001, pp. 20-27.

9. Jaeyeon Jung, Sit E., Balakrishnan H., Morris R., â€œDNS Performance and the Effectiveness of
Cachingâ€, IEEE/ACM Transactions on Networking, Volume 10, Issue 5, October 2002, pp. 589-603. 

10. Richard Liston, Sridhar Srinivasan, Ellen Segura, â€œ Diversity in DNS performance measuresâ€,
Proceedings of the second ACM SIGCOMM Workshop on Internet measurements, November 2002,
Marseille France.



JIBC

11. Garber Lee, â€œDenial of Service Attacks rip the Internetâ€, IEEE Computer, Volume 33, Issue 4,
April 2000, pp. 12-17.

12. Michael F. Schwartz, Calton Pu, â€œApplying an Information Gathering Architecture to Netfind: a
White Pages Tool for a Changing and Growing Internetâ€, IEEE/ACM Transactions on Networking,
Volume 2, issue 5, October 1994, pp. 426-439.

13. Zegura, E.W.; Ammar, M.H.; Zongming Fei; Bhattacharjee, S., â€œApplication-layer anycasting: a
server selection architecture and use in a replicated Web serviceâ€, IEEE/ACM Transactions on
Networking, Volume 8, Issue 4, August 2000, pp. 455-466. 


	Local Disk
	JIBC


